Bivariate Lagrange interpolation at the Chebyshev nodes
نویسندگان
چکیده
منابع مشابه
Bivariate Lagrange Interpolation at the Chebyshev Nodes
We discuss Lagrange interpolation on two sets of nodes in two dimensions where the coordinates of the nodes are Chebyshev points having either the same or opposite parity. We use a formula of Xu for Lagrange polynomials to obtain a general interpolation theorem for bivariate polynomials at either set of Chebyshev nodes. An extra term must be added to the interpolation formula to handle all poly...
متن کاملA survey on bivariate Lagrange interpolation on Lissajous nodes
This article is a survey on recent research on bivariate polynomial interpolation on the node points of Lissajous curves. The resulting theory is a generalization of the generating curve approach developed for Lagrange interpolation on the Padua points. After classifying the different types of Lissajous curves, we give a short overview on interpolation and quadrature rules defined on the node p...
متن کاملBivariate Polynomial Interpolation at the Geronimus Nodes
We consider a class of orthogonal polynomials that satisfy a threeterm recurrence formula with constant coefficients. This class contains the Geronimus class and, in particular, all four kinds of the Chebyshev polynomials. There are alternation points for each of these orthogonal polynomials that have a special compatibility with the polynomials of lower index. These points are the coordinates ...
متن کاملOn Lagrange Interpolation with Equidistant Nodes
In 1918 Bernstein [2] published a result concerning the divergence of Lagrange interpolation based on equidistant nodes. This result, which now has a prominent place in the study of the appoximation of functions by interpolation polynomials, may be described as follows. Throughout this paper let / (* ) = |x| (—1 < x < 1) and Xk,n = 1 + 2(fcl ) / ( n l ) (Jfe = 1,2,... ,n; n = 1 ,2 ,3 , . . . ) ...
متن کاملMultivariate polynomial interpolation on Lissajous-Chebyshev nodes
In this contribution, we study multivariate polynomial interpolation and quadrature rules on non-tensor product node sets linked to Lissajous curves and Chebyshev varieties. After classifying multivariate Lissajous curves and the interpolation nodes related to these curves, we derive a discrete orthogonality structure on these node sets. Using this discrete orthogonality structure, we can deriv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 2010
ISSN: 0002-9939
DOI: 10.1090/s0002-9939-2010-10581-6